{ "id": "2310.00159", "version": "v1", "published": "2023-09-29T21:49:39.000Z", "updated": "2023-09-29T21:49:39.000Z", "title": "Pólya urns on hypergraphs", "authors": [ "Pedro Alves", "Matheus Barros", "Yuri Lima" ], "comment": "18 pages, 2 figures", "categories": [ "math.DS", "math.CO", "math.PR" ], "abstract": "We study P\\'olya urns on hypergraphs and prove that, when the incidence matrix of the hypergraph is injective, there exists a point $v=v(H)$ such that the random process converges to $v$ almost surely. We also provide a partial result when the incidence matrix is not injective.", "revisions": [ { "version": "v1", "updated": "2023-09-29T21:49:39.000Z" } ], "analyses": { "keywords": [ "pólya urns", "hypergraph", "incidence matrix", "study polya urns", "random process converges" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }