{ "id": "2309.17292", "version": "v1", "published": "2023-09-29T14:49:02.000Z", "updated": "2023-09-29T14:49:02.000Z", "title": "Spectral gap and embedded trees for the Laplacian of the Erdős-Rényi graph", "authors": [ "Raphael Ducatez", "Renaud Rivier" ], "comment": "22 pages, 4 figures", "categories": [ "math.PR" ], "abstract": "For the Erd\\H{o}s-R\\'enyi graph of size $N$ with mean degree $(1+o(1))\\frac{\\log N}{t+1}\\leq d\\leq(1-o(1))\\frac{\\log N}{t}$ where $t\\in\\mathbb{N}^{*}$, with high probability the smallest non zero eigenvalue of the Laplacian is equal to $2-2\\cos(\\pi(2t+1)^{-1})+o(1)$. This eigenvalue arises from a small subgraph isomorphic to a line of size $t$ linked to the giant connected component by only one edge.", "revisions": [ { "version": "v1", "updated": "2023-09-29T14:49:02.000Z" } ], "analyses": { "keywords": [ "erdős-rényi graph", "spectral gap", "embedded trees", "smallest non zero eigenvalue", "small subgraph isomorphic" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }