{ "id": "2309.14579", "version": "v1", "published": "2023-09-25T23:52:55.000Z", "updated": "2023-09-25T23:52:55.000Z", "title": "Critical points at infinity of the 3-body Problem in $\\mathbb{R}^4$", "authors": [ "Alain Albouy", "Holger R. Dullin" ], "comment": "6 pages, 1 figure", "categories": [ "math.DS" ], "abstract": "We show that critical points at infinity in the 3-body problem in $\\mathbb{R}^4$ do not realize the infimum of the energy. This completes our previous work [Journal of Geometric Mechanics, 12, pp323-341 (2020), doi:10.3934/jgm.2020012] on the existence of Lyapunov stable relative periodic orbits in the 3-body problem in $\\mathbb{R}^4$.", "revisions": [ { "version": "v1", "updated": "2023-09-25T23:52:55.000Z" } ], "analyses": { "subjects": [ "37N05", "70F10", "70F15", "70H33", "53D20" ], "keywords": [ "critical points", "lyapunov stable relative periodic orbits", "geometric mechanics" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }