{ "id": "2309.12850", "version": "v1", "published": "2023-09-22T13:23:03.000Z", "updated": "2023-09-22T13:23:03.000Z", "title": "Corona theorem for the Dirichlet-type space", "authors": [ "Shuaibing Luo" ], "journal": "J. Geom. Anal. 32 (2022)", "categories": [ "math.FA" ], "abstract": "This paper utilizes Cauchy's transform and duality for the Dirichlet-type space $D(\\mu)$ with positive superharmonic weight $U_\\mu$ on the unit disk $\\mathbb{D}$ to establish the corona theorem for the Dirichlet-type multiplier algebra $M\\big(D(\\mu)\\big)$ that: if $$\\{f_1,...,f_n\\}\\subseteq M\\big(D(\\mu)\\big)\\quad\\text{and}\\quad \\inf_{z\\in\\mathbb{D}}\\sum_{j=1}^n|f_j(z)|>0$$ then $$ \\exists\\,\\{g_1,...,g_n\\}\\subseteq M\\big(D(\\mu)\\big)\\quad\\text{such that}\\quad \\sum_{j=1}^nf_jg_j=1, $$ thereby generalizing Carleson's corona theorem for $M(H^2)=H^\\infty$ and Xiao's corona theorem for $M(\\mathscr{D})\\subset H^\\infty$ thanks to $$ D(\\mu)=\\begin{cases} \\text{Hardy space}\\ H^2\\quad &\\text{as}\\quad d\\mu(z)=(1-|z|^2)\\,dA(z)\\ \\ \\forall\\ z\\in\\mathbb{D};\\\\ \\text{Dirichlet space}\\ \\mathscr{D}\\ &\\text{as}\\quad d\\mu(z)=|dz|\\ \\ \\forall\\ z\\in\\mathbb{T}=\\partial{\\mathbb{D}}. \\end{cases} $$", "revisions": [ { "version": "v1", "updated": "2023-09-22T13:23:03.000Z" } ], "analyses": { "keywords": [ "dirichlet-type space", "paper utilizes cauchys transform", "xiaos corona theorem", "generalizing carlesons corona theorem", "dirichlet-type multiplier algebra" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }