{ "id": "2309.11396", "version": "v1", "published": "2023-09-20T15:23:12.000Z", "updated": "2023-09-20T15:23:12.000Z", "title": "Convergence rate of numerical scheme for SDEs with a distributional drift in Besov space", "authors": [ "Luis Mario Chaparro Jáquez", "Elena Issoglio", "Jan Palczewski" ], "comment": "20 pages, 3 figures", "categories": [ "math.PR", "cs.NA", "math.NA" ], "abstract": "This paper is concerned with numerical solutions of one-dimensional SDEs with the drift being a generalised function, in particular belonging to the Holder-Zygmund space $C^{-\\gamma}$ of negative order $-\\gamma<0$ in the spacial variable. We design an Euler-Maruyama numerical scheme and prove its convergence, obtaining an upper bound for the strong $L^1$ convergence rate. We finally implement the scheme and discuss the results obtained.", "revisions": [ { "version": "v1", "updated": "2023-09-20T15:23:12.000Z" } ], "analyses": { "subjects": [ "65C30", "60H35", "65C20", "46F99" ], "keywords": [ "convergence rate", "besov space", "distributional drift", "upper bound", "euler-maruyama numerical scheme" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }