{ "id": "2309.09693", "version": "v1", "published": "2023-09-18T11:58:21.000Z", "updated": "2023-09-18T11:58:21.000Z", "title": "Minimal representations of the metaplectic Lie supergroup and the super Segal-Bargmann transform", "authors": [ "Sam Claerebout" ], "categories": [ "math.RT" ], "abstract": "We construct a Schr\\\"odinger model and a Fock model of a minimal representation of the metaplectic Lie supergroup $\\mathrm{Mp}(2m|2n,2n)$. Then, we show that the Schr\\\"odinger model of the minimal representation leads to an already known Schr\\\"odinger model of the metaplectic representation of $\\mathrm{Mp}(2m|2n,2n)$. Therefore, the Fock model of the minimal representation allows us to construct a Fock model of this metaplectic representation. We then construct an intertwining super Segal-Bargmann transform which extends the classical Segal-Bargmann transform.", "revisions": [ { "version": "v1", "updated": "2023-09-18T11:58:21.000Z" } ], "analyses": { "subjects": [ "17B10", "17B60", "43A32", "58C50" ], "keywords": [ "metaplectic lie supergroup", "minimal representation", "fock model", "metaplectic representation", "intertwining super segal-bargmann transform" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }