{ "id": "2309.09587", "version": "v1", "published": "2023-09-18T08:50:36.000Z", "updated": "2023-09-18T08:50:36.000Z", "title": "On the first Steklov-Dirichlet eigenvalue on eccentric annuli in general dimensions", "authors": [ "Jiho Hong", "Mikyoung Lim", "Dong-Hwi Seo" ], "comment": "19 pages, 3 figures", "categories": [ "math.AP" ], "abstract": "We consider the Steklov-Dirichlet eigenvalue problem on eccentric annuli in Euclidean space of general dimensions. In recent work by the same authors of this paper [21], a limiting behavior of the first eigenvalue, as the distance between the two boundary circles of an annulus approaches zero, was obtained in two dimensions. We extend this limiting behavior to general dimensions by employing bispherical coordinates and expressing the first eigenfunction as a Fourier-Gegenbauer series.", "revisions": [ { "version": "v1", "updated": "2023-09-18T08:50:36.000Z" } ], "analyses": { "subjects": [ "35P15", "49R05", "42C10" ], "keywords": [ "first steklov-dirichlet eigenvalue", "general dimensions", "eccentric annuli", "steklov-dirichlet eigenvalue problem", "annulus approaches zero" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }