{ "id": "2309.09154", "version": "v1", "published": "2023-09-17T04:38:56.000Z", "updated": "2023-09-17T04:38:56.000Z", "title": "Piecewise contracting maps on the interval: Hausdorff dimension, entropy and attractors", "authors": [ "A. E. Calderón", "E. Villar-Sepúlveda" ], "comment": "8 pages", "categories": [ "math.DS" ], "abstract": "We consider the attractor $\\Lambda$ of a piecewise contracting map $f$ defined on a compact interval. If $f$ is injective, we show that it is possible to estimate the topological entropy of $f$ (according to Bowen's formula) and the Hausdorff dimension of $\\Lambda$ via the complexity associated with the orbits of the system. Specifically, we prove that both numbers are zero.", "revisions": [ { "version": "v1", "updated": "2023-09-17T04:38:56.000Z" } ], "analyses": { "keywords": [ "piecewise contracting map", "hausdorff dimension", "compact interval", "bowens formula", "topological entropy" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }