{ "id": "2309.08184", "version": "v1", "published": "2023-09-15T06:19:49.000Z", "updated": "2023-09-15T06:19:49.000Z", "title": "On the first two eigenvalues of regular graphs", "authors": [ "Shengtong Zhang" ], "comment": "5 pages", "categories": [ "math.CO", "math.SP" ], "abstract": "Let $G$ be a regular graph with $m$ edges, and let $\\mu_1, \\mu_2$ denote the two largest eigenvalues of $A_G$, the adjacency matrix of $G$. We show that $$\\mu_1^2 + \\mu_2^2 \\leq \\frac{2(\\omega - 1)}{\\omega} m$$ where $\\omega$ is the clique number of $G$. This confirms a conjecture of Bollob\\'{a}s and Nikiforov for regular graphs.", "revisions": [ { "version": "v1", "updated": "2023-09-15T06:19:49.000Z" } ], "analyses": { "keywords": [ "regular graph", "largest eigenvalues", "adjacency matrix", "clique number" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }