{ "id": "2309.05948", "version": "v1", "published": "2023-09-12T03:53:36.000Z", "updated": "2023-09-12T03:53:36.000Z", "title": "Semantical cut-elimination for the provability logic of true arithmetic", "authors": [ "Ryo Kashima", "Yutaka Kato" ], "categories": [ "math.LO" ], "abstract": "The quasi-normal modal logic GLS is a provability logic formalizing the arithmetical truth. Kushida (2020) gave a sequent calculus for GLS and proved the cut-elimination theorem. This paper introduces semantical characterizations of GLS and gives a semantical proof of the cut-elimination theorem. These characterizations can be generalized to other quasi-normal modal logics.", "revisions": [ { "version": "v1", "updated": "2023-09-12T03:53:36.000Z" } ], "analyses": { "keywords": [ "provability logic", "true arithmetic", "semantical cut-elimination", "quasi-normal modal logic gls", "cut-elimination theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }