{ "id": "2309.04103", "version": "v1", "published": "2023-09-08T03:46:50.000Z", "updated": "2023-09-08T03:46:50.000Z", "title": "New improvement to Falconer distance set problem in higher dimensions", "authors": [ "Xiumin Du", "Yumeng Ou", "Kevin Ren", "Ruixiang Zhang" ], "comment": "36 pages", "categories": [ "math.CA", "math.CO", "math.MG" ], "abstract": "We show that if a compact set $E\\subset \\mathbb{R}^d$ has Hausdorff dimension larger than $\\frac{d}{2}+\\frac{1}{4}-\\frac{1}{8d+4}$, where $d\\geq 3$, then there is a point $x\\in E$ such that the pinned distance set $\\Delta_x(E)$ has positive Lebesgue measure. This improves upon bounds of Du-Zhang and Du-Iosevich-Ou-Wang-Zhang in all dimensions $d \\ge 3$. We also prove lower bounds for Hausdorff dimension of pinned distance sets when $\\dim_H (E) \\in (\\frac{d}{2} - \\frac{1}{4} - \\frac{3}{8d+4}, \\frac{d}{2}+\\frac{1}{4}-\\frac{1}{8d+4})$, which improves upon bounds of Harris and Wang-Zheng in dimensions $d \\ge 3$.", "revisions": [ { "version": "v1", "updated": "2023-09-08T03:46:50.000Z" } ], "analyses": { "subjects": [ "28A80", "28A78" ], "keywords": [ "falconer distance set problem", "higher dimensions", "pinned distance set", "improvement", "hausdorff dimension larger" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable" } } }