{ "id": "2309.02540", "version": "v1", "published": "2023-09-05T19:28:46.000Z", "updated": "2023-09-05T19:28:46.000Z", "title": "Toeplitz operators on the Siegel domain and the Heisenberg group", "authors": [ "Julio A. Barrera-Reyes", "Raul Quiroga-Barranco" ], "categories": [ "math.FA", "math.OA" ], "abstract": "For the usual action of the Heisenberg group $\\mathbb{H}_n$ on the Siegel domain $D_{n+1}$ ($n \\geq 1$) denote by $\\mathcal{T}^{(\\lambda)}(L^\\infty(D_{n+1})^{\\mathbb{H}_n})$ the $C^*$-algebra acting on the weighted Bergman space $\\mathcal{A}^2_\\lambda(D_{n+1})$ ($\\lambda > -1$) generated by Toeplitz operators whose symbols belong to $L^\\infty(D_{n+1})^{\\mathbb{H}_n}$ (essentially bounded and $\\mathbb{H}_n$-invariant). We prove that $\\mathcal{T}^{(\\lambda)}(L^\\infty(D_{n+1})^{\\mathbb{H}_n})$ is commutative and isomorphic to $\\mathrm{VSO}(\\mathbb{R}_+)$ (very slowly oscillating functions on $\\mathbb{R}_+$), for every $\\lambda > -1$ and $n \\geq 1$. We achieve this by Lie theory and symplectic geometry methods. We also compute the moment map of the $\\mathbb{H}_n$-action and some of its subgroups. A decomposition of the Bergman spaces $\\mathcal{A}^2_\\lambda(D_{n+1})$ as direct integrals of Fock spaces is also obtained and used to explain our main results.", "revisions": [ { "version": "v1", "updated": "2023-09-05T19:28:46.000Z" } ], "analyses": { "subjects": [ "47B35", "22E25", "53D20" ], "keywords": [ "siegel domain", "heisenberg group", "toeplitz operators", "symplectic geometry methods", "weighted bergman space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }