{ "id": "2309.01931", "version": "v1", "published": "2023-09-05T03:37:25.000Z", "updated": "2023-09-05T03:37:25.000Z", "title": "Separating cardinal characteristics of the strong measure zero ideal", "authors": [ "Jörg Brendle", "Miguel A. Cardona", "Diego A. Mejía" ], "categories": [ "math.LO" ], "abstract": "Let $\\mathcal{SN}$ be the $\\sigma$-ideal of the strong measure zero sets of reals. We present general properties of forcing notions that allow to control of the additivity of $\\mathcal{SN}$ after finite support iterations. This is applied to force that the four cardinal characteristics associated with $\\mathcal{SN}$ are pairwise different: \\[\\mathrm{add}(\\mathcal{SN})<\\mathrm{cov}(\\mathcal{SN})<\\mathrm{non}(\\mathcal{SN})<\\mathrm{cof}(\\mathcal{SN}).\\] Furthermore, we construct a forcing extension satisfying the above and Cicho\\'n's maximum (i.e. that the non-dependent values in Cicho\\'n's diagram are pairwise different).", "revisions": [ { "version": "v1", "updated": "2023-09-05T03:37:25.000Z" } ], "analyses": { "subjects": [ "03E17", "03E35", "03E40" ], "keywords": [ "strong measure zero ideal", "separating cardinal characteristics", "strong measure zero sets", "finite support iterations", "general properties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }