{ "id": "2309.01313", "version": "v1", "published": "2023-09-04T02:02:05.000Z", "updated": "2023-09-04T02:02:05.000Z", "title": "$L^1\\rightarrow L^\\infty$ Dispersive estimates for Coulomb waves", "authors": [ "Adam Black", "Ebru Toprak", "Bruno Vergara Biggio", "Jiahua Zou" ], "comment": "60 pages", "categories": [ "math.AP" ], "abstract": "We show the time decay of spherically symmetric Coulomb waves in $\\R^{3}$ for the case of a repulsive charge. By means of a distorted Fourier transform adapted to $H=-\\Delta+q\\cdot |x|^{-1}$, with $q>0$, we explicitly compute the kernel of the evolution operator $e^{itH}$. A detailed analysis of the kernel is then used to prove that for large times, $e^{i t H}$ obeys an $L^1 \\to L^\\infty$ dispersive estimate with the natural decay rate $t^{-\\f32}$.", "revisions": [ { "version": "v1", "updated": "2023-09-04T02:02:05.000Z" } ], "analyses": { "subjects": [ "35Q41", "35J10", "42B20", "33C15" ], "keywords": [ "dispersive estimate", "spherically symmetric coulomb waves", "natural decay rate", "time decay", "evolution operator" ], "note": { "typesetting": "TeX", "pages": 60, "language": "en", "license": "arXiv", "status": "editable" } } }