{ "id": "2309.00850", "version": "v1", "published": "2023-09-02T07:23:25.000Z", "updated": "2023-09-02T07:23:25.000Z", "title": "Invariant prime ideals in equivariant Lazard rings", "authors": [ "Markus Hausmann", "Lennart Meier" ], "comment": "43 pages, comments welcome", "categories": [ "math.AT", "math.AG" ], "abstract": "Let $A$ be an abelian compact Lie group. In this paper we compute the spectrum of invariant prime ideals of the $A$-equivariant Lazard ring, or equivalently the spectrum of points of the moduli stack of $A$-equivariant formal groups. We further show that this spectrum is homeomorphic to the Balmer spectrum of compact $A$-spectra, with the comparison map induced by equivariant complex bordism homology.", "revisions": [ { "version": "v1", "updated": "2023-09-02T07:23:25.000Z" } ], "analyses": { "subjects": [ "55N22", "57R85", "14L05", "55P91" ], "keywords": [ "invariant prime ideals", "equivariant lazard ring", "abelian compact lie group", "equivariant complex bordism homology", "equivariant formal groups" ], "note": { "typesetting": "TeX", "pages": 43, "language": "en", "license": "arXiv", "status": "editable" } } }