{ "id": "2309.00392", "version": "v1", "published": "2023-09-01T11:10:29.000Z", "updated": "2023-09-01T11:10:29.000Z", "title": "A decidable expansion of $(Γ,+,F)$ with the independence property", "authors": [ "Françoise Point" ], "categories": [ "math.LO" ], "abstract": "Let $(\\Gamma,+,F)$ be a finitely generated $\\mathbb Z[F]$-module where $F$ is an injective endomorphism of the abelian group $\\Gamma$. We restrict ourselves to a finite automa presentable subclass, introduced by J. Bell and R. Moosa in \"F-sets and finite automata. J. Th\\'eor. Nombres Bordeaux 31 (2019), no. 1, 101-130\" and define an expansion containing the $\\mathcal F$-sets defined by R. Moosa and T. Scanlon in \"Am. J. Math. 126 (2004), no. 3, p. 473-522\", where every automatic subset is definable.", "revisions": [ { "version": "v1", "updated": "2023-09-01T11:10:29.000Z" } ], "analyses": { "subjects": [ "03C45", "11B85", "68Q45" ], "keywords": [ "independence property", "decidable expansion", "finite automa presentable subclass", "nombres bordeaux", "finite automata" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }