{ "id": "2309.00294", "version": "v1", "published": "2023-09-01T06:59:57.000Z", "updated": "2023-09-01T06:59:57.000Z", "title": "On representation equivalence and multiplicity measure for lattices in Lie Groups", "authors": [ "Chandrasheel Bhagwat", "Kaustabh Mondal" ], "comment": "15 Pages", "categories": [ "math.RT", "math.GR", "math.NT" ], "abstract": "We prove an analogue of the strong multiplicity one theorem in the context of finite covolume lattices in the group $G ={ \\rm SO}(2,1)^\\circ$. We show that the multiplicity measures of two lattices are same if they agree outside a finite measure subset of $\\widehat G$.", "revisions": [ { "version": "v1", "updated": "2023-09-01T06:59:57.000Z" } ], "analyses": { "subjects": [ "22E40", "22E45", "53C35" ], "keywords": [ "multiplicity measure", "representation equivalence", "lie groups", "finite covolume lattices", "finite measure subset" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }