{ "id": "2308.15588", "version": "v1", "published": "2023-08-29T19:32:21.000Z", "updated": "2023-08-29T19:32:21.000Z", "title": "On Edge Coloring of Multigraphs", "authors": [ "Guangming Jing" ], "categories": [ "math.CO" ], "abstract": "Let $\\Delta(G)$ and $\\chi'(G)$ be the maximum degree and chromatic index of a graph $G$, respectively. Appearing in different format, Gupta\\,(1967), Goldberg\\,(1973), Andersen\\,(1977), and Seymour\\,(1979) made the following conjecture: Every multigraph $G$ satisfies $\\chi'(G) \\le \\max\\{ \\Delta(G) + 1, \\Gamma(G) \\}$, where $\\Gamma(G) = \\max_{H \\subseteq G} \\left\\lceil \\frac{ |E(H)| }{ \\lfloor \\tfrac{1}{2} |V(H)| \\rfloor} \\right\\rceil$ is the density of $G$. In this paper, we present a polynomial-time algorithm for coloring any multigraph with $\\max\\{ \\Delta(G) + 1, \\Gamma(G) \\}$ many colors, confirming the conjecture. Since $\\chi'(G)\\geq \\max\\{ \\Delta(G), \\Gamma(G) \\}$, this algorithm gives a proper edge coloring that uses at most one more color than the optimum. As determining the chromatic index of an arbitrary graph is $NP$-hard, the $\\max\\{ \\Delta(G) + 1, \\Gamma(G) \\}$ bound is best possible for efficient proper edge coloring algorithms on general multigraphs, unless $P=NP$.", "revisions": [ { "version": "v1", "updated": "2023-08-29T19:32:21.000Z" } ], "analyses": { "keywords": [ "chromatic index", "efficient proper edge coloring algorithms", "conjecture", "polynomial-time algorithm", "general multigraphs" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }