{ "id": "2308.15248", "version": "v1", "published": "2023-08-29T12:14:06.000Z", "updated": "2023-08-29T12:14:06.000Z", "title": "On the chromatic number of some ($P_3\\cup P_2$)-free graphs", "authors": [ "Rui Li", "Jinfeng Li", "Di Wu" ], "comment": "arXiv admin note: substantial text overlap with arXiv:2308.05442, arXiv:2308.08768", "categories": [ "math.CO" ], "abstract": "A hereditary class $\\cal G$ of graphs is {\\em $\\chi$-bounded} if there is a {\\em $\\chi$-binding function}, say $f$, such that $\\chi(G)\\le f(\\omega(G))$ for every $G\\in\\cal G$, where $\\chi(G)(\\omega(G))$ denotes the chromatic (clique) number of $G$. It is known that for every $(P_3\\cup P_2)$-free graph $G$, $\\chi(G)\\le \\frac{1}{6}\\omega(G)(\\omega(G)+1)(\\omega(G)+2)$ \\cite{BA18}, and the class of $(2K_2, 3K_1)$-free graphs does not admit a linear $\\chi$-binding function\\cite{BBS19}. In this paper, we prove that (\\romannumeral 1) $\\chi(G)\\le2\\omega(G)$ if $G$ is ($P_3\\cup P_2$, kite)-free, (\\romannumeral 2) $\\chi(G)\\le\\omega^2(G)$ if $G$ is ($P_3\\cup P_2$, hammer)-free, (\\romannumeral 3) $\\chi(G)\\le\\frac{3\\omega^2(G)+\\omega(G)}{2}$ if $G$ is ($P_3\\cup P_2, C_5$)-free. Furthermore, we also discuss $\\chi$-binding functions for $(P_3\\cup P_2, K_4)$-free graphs.", "revisions": [ { "version": "v1", "updated": "2023-08-29T12:14:06.000Z" } ], "analyses": { "keywords": [ "free graph", "chromatic number", "binding function", "hereditary class" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }