{ "id": "2308.15221", "version": "v1", "published": "2023-08-29T11:22:36.000Z", "updated": "2023-08-29T11:22:36.000Z", "title": "Morphisms between Grassmannians, II", "authors": [ "Gianluca Occhetta", "Eugenia Tondelli" ], "categories": [ "math.AG" ], "abstract": "Denote by $\\mathbb G(k,n)$ the Grassmannian of linear subspaces of dimension $k$ in $\\mathbb P^n$. We show that, if $\\varphi:\\mathbb G(l,n) \\to \\mathbb G(k,n)$ is a non constant morphism and $l \\not=0,n-1$ then $l=k$ or $l=n-k-1$ and $\\varphi$ is an isomorphism.", "revisions": [ { "version": "v1", "updated": "2023-08-29T11:22:36.000Z" } ], "analyses": { "subjects": [ "14M15", "14J45" ], "keywords": [ "grassmannian", "non constant morphism", "linear subspaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }