{ "id": "2308.13747", "version": "v1", "published": "2023-08-26T03:13:16.000Z", "updated": "2023-08-26T03:13:16.000Z", "title": "Extensions and Approximations", "authors": [ "Ikemefuna Agbanusi" ], "comment": "9 pages", "categories": [ "math.CA" ], "abstract": "We investigate the order of approximation when certain singular kernels when act on the zero-extension of functions. The results can be repurposed to give non trivial estimates on the moduli of continuity of zero-extensions. Our approach avoids the use of Hardy type inequalities and so applies to any function in $L^p([0,1]^d)$ regardless of smoothness.", "revisions": [ { "version": "v1", "updated": "2023-08-26T03:13:16.000Z" } ], "analyses": { "subjects": [ "41A25", "46E35" ], "keywords": [ "approximation", "extensions", "non trivial estimates", "hardy type inequalities", "singular kernels" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }