{ "id": "2308.13583", "version": "v1", "published": "2023-08-25T15:17:03.000Z", "updated": "2023-08-25T15:17:03.000Z", "title": "Orthogonality of the big $-1$ Jacobi polynomials for non-standard parameters", "authors": [ "Howard S. Cohl", "Roberto S. Costas-Santos" ], "comment": "7 pages", "categories": [ "math.CA" ], "abstract": "The big $-1$ Jacobi polynomials $(Q_n^{(0)}(x;\\alpha,\\beta,c))_n$ have been classically defined for $\\alpha,\\beta\\in(-1,\\infty)$, $c\\in(-1,1)$. We extend this family so that wider sets of parameters are allowed, i.e., they are non-standard. Assuming initial conditions $Q^{(0)}_0(x)=1$, $Q^{(0)}_{-1}(x)=0$, we consider the big $-1$ Jacobi polynomials as monic orthogonal polynomials which therefore satisfy the following three-term recurrence relation \\[ xQ^{(0)}_n(x)=Q^{(0)}_{n+1}(x)+b_{n} Q^{(0)}_n(x)+ u_{n} Q^{(0)}_{n-1}(x), \\quad n=0, 1, 2,\\ldots. \\] For standard parameters, the coefficients $u_n>0$ for all $n$. We discuss the situation where Favard's theorem cannot be directly applied for some positive integer $n$ such that $u_n=0$. We express the big $-1$ Jacobi polynomials for non-standard parameters as a product of two polynomials. Using this factorization, we obtain a bilinear form with respect to which these polynomials are orthogonal.", "revisions": [ { "version": "v1", "updated": "2023-08-25T15:17:03.000Z" } ], "analyses": { "subjects": [ "44A20", "42C05", "33C05" ], "keywords": [ "jacobi polynomials", "non-standard parameters", "orthogonality", "monic orthogonal polynomials", "three-term recurrence relation" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }