{ "id": "2308.11163", "version": "v1", "published": "2023-08-22T03:44:58.000Z", "updated": "2023-08-22T03:44:58.000Z", "title": "S-limit shadowing and a global description of Li-Yorke type chaos", "authors": [ "Noriaki Kawaguchi" ], "comment": "18 pages", "categories": [ "math.DS" ], "abstract": "For any continuous self-map of a compact metric space, we extend a partition of each chain component with respect to a chain proximal relation to a $G_\\delta$-partition of the phase space. Under the assumption of s-limit shadowing, we use this partition to give a global description of Li-Yorke type chaos corresponding to several Furstenberg families.", "revisions": [ { "version": "v1", "updated": "2023-08-22T03:44:58.000Z" } ], "analyses": { "subjects": [ "37B05", "37B35", "37B65", "37D45" ], "keywords": [ "global description", "s-limit shadowing", "compact metric space", "chain proximal relation", "furstenberg families" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }