{ "id": "2308.10485", "version": "v1", "published": "2023-08-21T06:01:09.000Z", "updated": "2023-08-21T06:01:09.000Z", "title": "Counting elements of the congruence subgroup", "authors": [ "Kamil Bulinski", "Igor E. Shparlinski" ], "categories": [ "math.NT" ], "abstract": "We obtain asymptotic formulas for the number of matrices in the congruence subgroup \\[ \\Gamma_0(Q) = \\left\\{ A\\in\\mathrm{SL}_2(\\mathbb Z):~c \\equiv 0 \\pmod Q\\right\\}, \\] which are of naive height at most $X$. Our result is uniform in a very broad range of values $Q$ and $X$.", "revisions": [ { "version": "v1", "updated": "2023-08-21T06:01:09.000Z" } ], "analyses": { "keywords": [ "congruence subgroup", "counting elements", "asymptotic formulas", "broad range" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }