{ "id": "2308.10222", "version": "v1", "published": "2023-08-20T10:11:53.000Z", "updated": "2023-08-20T10:11:53.000Z", "title": "Regularity for double phase problems at nearly linear growth", "authors": [ "Cristiana De Filippis", "Giuseppe Mingione" ], "comment": "50 pages", "journal": "Arch. Ration. Mech. Anal. 247:85, (2023)", "doi": "10.1007/s00205-023-01907-3", "categories": [ "math.AP" ], "abstract": "Minima of functionals of the type $$ w\\mapsto \\int_{\\Omega}\\left[\\snr{Dw}\\log(1+\\snr{Dw})+a(x)\\snr{Dw}^{q}\\right] \\dx\\,, \\quad 0\\leq a(\\cdot) \\in C^{0, \\alpha}\\,,$$ with $\\Omega \\subset \\er^n$, have locally H\\\"older continuous gradient provided $1 < q < 1+\\alpha/n$.", "revisions": [ { "version": "v1", "updated": "2023-08-20T10:11:53.000Z" } ], "analyses": { "keywords": [ "double phase problems", "linear growth", "regularity" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 50, "language": "en", "license": "arXiv", "status": "editable" } } }