{ "id": "2308.10096", "version": "v1", "published": "2023-08-19T19:48:47.000Z", "updated": "2023-08-19T19:48:47.000Z", "title": "Essential dimension of symmetric groups in prime characteristic", "authors": [ "Oakley Edens", "Zinovy Reichstein" ], "comment": "8 pages", "categories": [ "math.AG", "math.GR" ], "abstract": "The essential dimension $\\operatorname{ed}_k({\\rm S}_n)$ of the symmetric group ${\\rm S}_n$ is the minimal integer $d$ such that the general polynomial $x^n + a_1 x^{n-1} + \\ldots + a_n$ can be reduced to a $d$-parameter form by a Tschirnhaus transformation. Finding this number is a long-standing open problem, originating in the work of Felix Klein, long before essential dimension was formally defined. We now know that $\\operatorname{ed}_k({\\rm S}_n)$ lies between $\\lfloor n/2 \\rfloor$ and $n-3$ for every $n \\geqslant 5$ and every field $k$ of characteristic different from $2$. Moreover, if $\\operatorname{char}(k) = 0$, then $\\operatorname{ed}_k({\\rm S}_n) \\geqslant \\lfloor (n+1)/2 \\rfloor$ for any $n \\geqslant 6$. The value of $\\operatorname{ed}_k({\\rm S}_n)$ is not known for any $n \\geqslant 8$ and any field $k$, though it is widely believed that $\\operatorname{ed}_k({\\rm S}_n)$ should be $n-3$ for every $n \\geqslant 5$, at least in characteristic $0$. In this paper we show that for every odd prime $p$ there are infinitely many positive integers $n$ such that $\\operatorname{ed}_{\\mathbb F_p}(\\rm{S}_n) \\leqslant n-4$.", "revisions": [ { "version": "v1", "updated": "2023-08-19T19:48:47.000Z" } ], "analyses": { "subjects": [ "12E05", "14G17", "14L30", "14E05" ], "keywords": [ "essential dimension", "symmetric group", "prime characteristic", "odd prime", "minimal integer" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }