{ "id": "2308.08867", "version": "v1", "published": "2023-08-17T08:56:22.000Z", "updated": "2023-08-17T08:56:22.000Z", "title": "Sum-product phenomenon in quotients of rings of algebraic integers", "authors": [ "Jincheng Tang", "Xin Zhang" ], "categories": [ "math.NT", "math.CO" ], "abstract": "We obtain a bounded generation theorem over $\\mathcal O/\\mathfrak a$, where $\\mathcal O$ is the ring of integers of a number field and $\\mathfrak a$ a general ideal of $\\mathcal O$. This addresses a conjecture of Salehi-Golsefidy. Along the way, we obtain nontrivial bounds for additive character sums over $\\mathcal O/\\mathcal P^n$ for a prime ideal $\\mathcal P$ with the aid of certain sum-product estimates.", "revisions": [ { "version": "v1", "updated": "2023-08-17T08:56:22.000Z" } ], "analyses": { "keywords": [ "algebraic integers", "sum-product phenomenon", "bounded generation theorem", "prime ideal", "additive character sums" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }