{ "id": "2308.08254", "version": "v1", "published": "2023-08-16T09:47:04.000Z", "updated": "2023-08-16T09:47:04.000Z", "title": "Cameron-Liebler sets in permutation groups", "authors": [ "Jozefien D'haeseleer", "Karen Meagher", "Venkata Raghu Tej Pantangi" ], "comment": "25 pages", "categories": [ "math.CO" ], "abstract": "Consider a group $G$ acting on a set $\\Omega$, the vector $v_{a,b}$ is a vector with the entries indexed by the elements of $G$, and the $g$-entry is 1 if $g$ maps $a$ to $b$, and zero otherwise. A $(G,\\Omega)$-Cameron-Liebler set is a subset of $G$, whose indicator function is a linear combination of elements in $\\{v_{a, b}\\ :\\ a, b \\in \\Omega\\}$. We investigate Cameron-Liebler sets in permutation groups, with a focus on constructions of Cameron-Liebler sets for 2-transitive groups.", "revisions": [ { "version": "v1", "updated": "2023-08-16T09:47:04.000Z" } ], "analyses": { "subjects": [ "05C50", "05E15" ], "keywords": [ "cameron-liebler set", "permutation groups", "indicator function", "linear combination" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }