{ "id": "2308.07851", "version": "v1", "published": "2023-08-15T15:55:18.000Z", "updated": "2023-08-15T15:55:18.000Z", "title": "An imperceptible connection between the Clebsch--Gordan coefficients of $U_q(\\mathfrak{sl}_2)$ and the Terwilliger algebras of Grassmann graphs", "authors": [ "Hau-Wen Huang" ], "comment": "65 pages", "categories": [ "math.CO", "math.QA" ], "abstract": "The Clebsch--Gordan coefficients of $U(\\mathfrak{sl}_2)$ are expressible in terms of Hahn polynomials. The phenomenon can be explained by an algebra homomorphism from the universal Hahn algebra $\\mathcal H$ into $U(\\mathfrak{sl}_2)\\otimes U(\\mathfrak{sl}_2)$. Let $\\Omega$ denote a finite set and $2^\\Omega$ denote the power set of $\\Omega$. It is generally known that $\\mathbb C^{2^\\Omega}$ supports a $U(\\mathfrak{sl}_2)$-module. Fix an element $x_0\\in 2^\\Omega$. By the linear isomorphism $\\mathbb C^{2^\\Omega}\\to \\mathbb C^{2^{\\Omega\\setminus x_0}}\\otimes \\mathbb C^{2^{x_0}}$ given by $x\\mapsto (x\\setminus x_0)\\otimes (x\\cap x_0)$ for all $x\\in 2^\\Omega$, this induces a $U(\\mathfrak{sl}_2)\\otimes U(\\mathfrak{sl}_2)$-module structure on $\\mathbb C^{2^\\Omega}$. Pulling back via the algebra homomorphism $\\mathcal H\\to U(\\mathfrak{sl}_2)\\otimes U(\\mathfrak{sl}_2)$, the $U(\\mathfrak{sl}_2)\\otimes U(\\mathfrak{sl}_2)$-module $\\mathbb C^{2^\\Omega}$ forms an $\\mathcal H$-module. The $\\mathcal H$-module $\\mathbb C^{2^\\Omega}$ enfolds the Terwilliger algebra of a Johnson graph. This result connects these two seemingly irrelevant topics: The Clebsch--Gordan coefficients of $U(\\mathfrak{sl}_2)$ and the Terwilliger algebras of Johnson graphs. Unfortunately some steps break down in the $q$-analog case. By making detours, the imperceptible connection between the Clebsch--Gordan coefficients of $U_q(\\mathfrak{sl}_2)$ and the Terwilliger algebras of Grassmann graphs is successfully disclosed in this paper.", "revisions": [ { "version": "v1", "updated": "2023-08-15T15:55:18.000Z" } ], "analyses": { "subjects": [ "05E30", "06A11", "16G30", "17B37", "33D45" ], "keywords": [ "terwilliger algebra", "clebsch-gordan coefficients", "grassmann graphs", "imperceptible connection", "algebra homomorphism" ], "note": { "typesetting": "TeX", "pages": 65, "language": "en", "license": "arXiv", "status": "editable" } } }