{ "id": "2308.07516", "version": "v1", "published": "2023-08-15T01:07:07.000Z", "updated": "2023-08-15T01:07:07.000Z", "title": "Robust Parameter Estimation for Hybrid Dynamical Systems", "authors": [ "Ryan S. Johnson", "Stefano Di Cairano", "Ricardo G. Sanfelice" ], "categories": [ "math.OC", "math.DS" ], "abstract": "We consider the problem of estimating a vector of unknown constant parameters for a class of hybrid dynamical systems -- that is, systems whose state variables exhibit both continuous (flow) and discrete (jump) evolution. Using a hybrid systems framework, we propose a hybrid estimation algorithm that can operate during both flows and jumps that, under a notion of hybrid persistence of excitation, guarantees convergence of the parameter estimate to the true value. Furthermore, we show that the parameter estimate is input-to-state stable with respect to a class of hybrid disturbances. Simulation results including a spacecraft application show the merits of our proposed approach.", "revisions": [ { "version": "v1", "updated": "2023-08-15T01:07:07.000Z" } ], "analyses": { "keywords": [ "hybrid dynamical systems", "robust parameter estimation", "parameter estimate", "hybrid systems framework", "unknown constant parameters" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }