{ "id": "2308.07287", "version": "v1", "published": "2023-08-14T17:19:52.000Z", "updated": "2023-08-14T17:19:52.000Z", "title": "On a semidefinite programming characterizations of the numerical radius and its dual norm", "authors": [ "Shmuel Friedland", "Chi-Kwong Li" ], "comment": "12 pages", "categories": [ "math.NA", "cs.NA", "math.OC" ], "abstract": "We give a semidefinite programming characterization of the dual norm of numerical radius for matrices. This characterization yields a new proof of semidefinite characterization of the numerical radius for matrices, which follows from Ando's characterization. We show that the computation of the numerical radius and its dual norm within $\\varepsilon$ precision are polynomially time computable in the data and $|\\log \\varepsilon |$ using the short step, primal interior point method.", "revisions": [ { "version": "v1", "updated": "2023-08-14T17:19:52.000Z" } ], "analyses": { "subjects": [ "15A60", "15A69", "68Q25", "68W25", "90C22", "90C51" ], "keywords": [ "semidefinite programming characterization", "numerical radius", "dual norm", "primal interior point method", "andos characterization" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }