{ "id": "2308.07278", "version": "v1", "published": "2023-08-14T17:10:11.000Z", "updated": "2023-08-14T17:10:11.000Z", "title": "Local antimagic chromatic number of partite graphs", "authors": [ "C. R. Pavithra", "A. V. Prajeesh", "V. S. Sarath" ], "categories": [ "math.CO" ], "abstract": "Let $G$ be a connected graph with $|V| = n$ and $|E| = m$. A bijection $f:E\\rightarrow \\{1,2,...,m\\}$ is called a local antimagic labeling of $G$ if for any two adjacent vertices $u$ and $v$, $w(u) \\neq w(v)$, where $w(u) = \\sum_{e \\in E(u)}f(e)$, and $E(u)$ is the set of edges incident to $u$. Thus, any local antimagic labeling induces a proper vertex coloring of $G$ where the vertex $v$ is assigned the color $w(v)$. The local antimagic chromatic number is the minimum number of colors taken over all colorings induced by local antimagic labelings of $G$. Let $m,n > 1$. In this paper, the local antimagic chromatic number of a complete tripartite graph $K_{1,m,n}$, and $r$ copies of a complete bipartite graph $K_{m,n}$ where $m \\not \\equiv n \\bmod 2$ are determined.", "revisions": [ { "version": "v1", "updated": "2023-08-14T17:10:11.000Z" } ], "analyses": { "subjects": [ "05C78" ], "keywords": [ "local antimagic chromatic number", "partite graphs", "complete bipartite graph", "local antimagic labeling induces", "complete tripartite graph" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }