{ "id": "2308.07128", "version": "v1", "published": "2023-08-14T13:28:25.000Z", "updated": "2023-08-14T13:28:25.000Z", "title": "Hardy-Littlewood maximal operators on trees with bounded geometry", "authors": [ "Matteo Levi", "Stefano Meda", "Federico Santagati", "Maria Vallarino" ], "comment": "30 pages", "categories": [ "math.FA", "math.CA" ], "abstract": "In this paper we study the $L^p$ boundedness of the centred and the uncentred Hardy--Littlewood maximal operators on the class $\\Upsilon_{a,b}$, $2\\leq a\\leq b$, of trees with $(a,b)$-bounded geometry. We find the sharp range of $p$, depending on $a$ and $b$, where the centred maximal operator is bounded on $L^p(\\mathfrak T)$ for all $\\mathfrak T$ in $\\Upsilon_{a,b}$. We show that there exists a tree in $\\Upsilon_{a,b}$ for which the uncentred maximal function is bounded on $L^p$ if and only if $p=\\infty$. We also extend these results to graphs which are strictly roughly isometric, in the sense of Kanai, to trees in the class $\\Upsilon_{a,b}$.", "revisions": [ { "version": "v1", "updated": "2023-08-14T13:28:25.000Z" } ], "analyses": { "keywords": [ "bounded geometry", "uncentred hardy-littlewood maximal operators", "centred maximal operator", "uncentred maximal function", "sharp range" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }