{ "id": "2308.05631", "version": "v1", "published": "2023-08-10T15:19:07.000Z", "updated": "2023-08-10T15:19:07.000Z", "title": "Some new decay estimates for $(2+1)$-dimensional degenerate oscillatory integral operators", "authors": [ "Yuxin Tan", "Shaozhen Xu" ], "categories": [ "math.CA" ], "abstract": "In this paper, we consider the $(2+1)-$dimensional oscillatory integral operators with cubic homogeneous polynomial phases, which are degenerate in the sense of \\cite{Tan06}. We improve the previously known $L^2\\to L^2$ decay rate to $3/8$ and also establish a sharp $L^2\\to L^6$ decay estimate based on fractional integration method.", "revisions": [ { "version": "v1", "updated": "2023-08-10T15:19:07.000Z" } ], "analyses": { "subjects": [ "42B20", "47G10" ], "keywords": [ "dimensional degenerate oscillatory integral operators", "decay estimate", "dimensional oscillatory integral operators", "cubic homogeneous polynomial phases", "fractional integration method" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }