{ "id": "2308.04174", "version": "v1", "published": "2023-08-08T10:13:23.000Z", "updated": "2023-08-08T10:13:23.000Z", "title": "The parametrix construction of the heat kernel on a graph", "authors": [ "Gautam Chinta", "Jay Jorgenson", "Anders Karlsson", "Lejla Smajlović" ], "comment": "24 pages", "categories": [ "math.AP", "math.CO" ], "abstract": "In this paper we develop the parametrix approach for constructing the heat kernel on a graph $G$. In particular, we highlight two specific cases. First, we consider the case when $G$ is embedded in a Eulidean domain or manifold $\\Omega$, and we use a heat kernel associated to $\\Omega$ to obtain a formula for the heat kernel on $G$. Second, we consider when $G$ is a subgraph of a larger graph $\\widetilde{G}$, and we obtain a formula for the heat kernel on $G$ from the heat kernel on $\\widetilde{G}$ restricted to $G$.", "revisions": [ { "version": "v1", "updated": "2023-08-08T10:13:23.000Z" } ], "analyses": { "subjects": [ "35K08", "05C50", "35K05", "39A12", "33C10" ], "keywords": [ "heat kernel", "parametrix construction", "parametrix approach", "eulidean domain", "larger graph" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }