{ "id": "2308.04111", "version": "v1", "published": "2023-08-08T07:53:21.000Z", "updated": "2023-08-08T07:53:21.000Z", "title": "On the stability of Caffarelli-Kohn-Nirenberg inequality in $\\R^2$", "authors": [ "Shengbing Deng", "Xingliang Tian" ], "comment": "arXiv admin note: text overlap with arXiv:2211.14185 by other authors", "categories": [ "math.AP" ], "abstract": "Dolbeault, Esteban and Loss \\cite{DEL16} obtained an optimal rigidity result, that is, when $a<0$ and $b_{\\mathrm{FS}}(a)\\leq b0$ of the following Caffarelli-Kohn-Nirenberg inequality is symmetry, \\[ \\mathcal{S}_{a,b}\\left(\\int_{\\R^2}|x|^{-qb}|u|^q \\mathrm{d}x\\right)^{\\frac{2}{q}} \\leq \\int_{\\R^2}|x|^{-2a}|\\nabla u|^2 \\mathrm{d}x, \\quad \\mbox{for all}\\quad u\\in C^\\infty_0(\\R^2), \\] where $b_{\\mathrm{FS}}(a):=a-\\frac{a}{\\sqrt{a^2+1}}$, $q=\\frac{2}{b-a}$. An important task is investigating the stability of critical points set $\\mathcal{M}$ for this inequality. Firstly, we classify solutions of the linearized problem related to the extremals which fills the work of Felli and Schneider \\cite{FS03}. When $b_{\\mathrm{FS}}(a)< b0$, however it is false when $b=b_{\\mathrm{FS}}(a)$, which extends the work of Wei and Wu \\cite{WW22} to $\\R^2$. Furthermore, we obtain the existence of minimizers for $\\mathcal{B}$ which extends the recent work of K\\\"{o}nig \\cite{Ko22-2}.", "revisions": [ { "version": "v1", "updated": "2023-08-08T07:53:21.000Z" } ], "analyses": { "subjects": [ "35P30", "26D10", "49J40" ], "keywords": [ "caffarelli-kohn-nirenberg inequality", "optimal rigidity result", "spectral estimate", "critical points set", "compactness argument" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }