{
"id": "2308.04111",
"version": "v1",
"published": "2023-08-08T07:53:21.000Z",
"updated": "2023-08-08T07:53:21.000Z",
"title": "On the stability of Caffarelli-Kohn-Nirenberg inequality in $\\R^2$",
"authors": [
"Shengbing Deng",
"Xingliang Tian"
],
"comment": "arXiv admin note: text overlap with arXiv:2211.14185 by other authors",
"categories": [
"math.AP"
],
"abstract": "Dolbeault, Esteban and Loss \\cite{DEL16} obtained an optimal rigidity result, that is, when $a<0$ and $b_{\\mathrm{FS}}(a)\\leq b0$ of the following Caffarelli-Kohn-Nirenberg inequality is symmetry, \\[ \\mathcal{S}_{a,b}\\left(\\int_{\\R^2}|x|^{-qb}|u|^q \\mathrm{d}x\\right)^{\\frac{2}{q}} \\leq \\int_{\\R^2}|x|^{-2a}|\\nabla u|^2 \\mathrm{d}x, \\quad \\mbox{for all}\\quad u\\in C^\\infty_0(\\R^2), \\] where $b_{\\mathrm{FS}}(a):=a-\\frac{a}{\\sqrt{a^2+1}}$, $q=\\frac{2}{b-a}$. An important task is investigating the stability of critical points set $\\mathcal{M}$ for this inequality. Firstly, we classify solutions of the linearized problem related to the extremals which fills the work of Felli and Schneider \\cite{FS03}. When $b_{\\mathrm{FS}}(a)< b0$, however it is false when $b=b_{\\mathrm{FS}}(a)$, which extends the work of Wei and Wu \\cite{WW22} to $\\R^2$. Furthermore, we obtain the existence of minimizers for $\\mathcal{B}$ which extends the recent work of K\\\"{o}nig \\cite{Ko22-2}.",
"revisions": [
{
"version": "v1",
"updated": "2023-08-08T07:53:21.000Z"
}
],
"analyses": {
"subjects": [
"35P30",
"26D10",
"49J40"
],
"keywords": [
"caffarelli-kohn-nirenberg inequality",
"optimal rigidity result",
"spectral estimate",
"critical points set",
"compactness argument"
],
"note": {
"typesetting": "TeX",
"pages": 0,
"language": "en",
"license": "arXiv",
"status": "editable"
}
}
}