{ "id": "2308.03174", "version": "v1", "published": "2023-08-06T18:04:19.000Z", "updated": "2023-08-06T18:04:19.000Z", "title": "Finite simple groups with two maximal subgroups of coprime orders", "authors": [ "N. V. Maslova" ], "comment": "9 pages", "categories": [ "math.GR" ], "abstract": "In 1962, V.A. Belonogov proved that if a finite group $G$ contains two maximal subgroups of coprime orders, then either $G$ is one of known solvable groups or $G$ is simple. In this short note based on results by M. Liebeck and J. Saxl on odd order maximal subgroups in finite simple groups we determine possibilities for triples $(G,H,M)$, where $G$ is a finite nonabelian simple group, $H$ and $M$ are maximal subgroups of $G$ with $(|H|,|M|)=1$.", "revisions": [ { "version": "v1", "updated": "2023-08-06T18:04:19.000Z" } ], "analyses": { "subjects": [ "20D60", "20D05" ], "keywords": [ "finite simple groups", "coprime orders", "finite nonabelian simple group", "odd order maximal subgroups", "determine possibilities" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }