{ "id": "2308.01718", "version": "v1", "published": "2023-08-03T12:22:12.000Z", "updated": "2023-08-03T12:22:12.000Z", "title": "Symplectic tableaux and quantum symmetric pairs", "authors": [ "Hideya Watanabe" ], "comment": "40 pages", "categories": [ "math.RT", "math.CO", "math.QA" ], "abstract": "We provide a new branching rule from the general linear group $GL_{2n}(\\mathbb{C})$ to the symplectic group $Sp_{2n}(\\mathbb{C})$ by establishing a simple algorithm which gives rise to a bijection from the set of semistandard tableaux of a fixed shape to a disjoint union of several copies of sets of symplectic tableaux of various shapes. The algorithm arises from representation theory of a quantum symmetric pair of type $A\\mathrm{II}_{2n-1}$, which is a $q$-analogue of the classical symmetric pair $(\\mathfrak{gl}_{2n}(\\mathbb{C}), \\mathfrak{sp}_{2n}(\\mathbb{C}))$.", "revisions": [ { "version": "v1", "updated": "2023-08-03T12:22:12.000Z" } ], "analyses": { "subjects": [ "05E10", "17B10", "17B37" ], "keywords": [ "quantum symmetric pair", "symplectic tableaux", "general linear group", "classical symmetric pair", "representation theory" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }