{ "id": "2308.01683", "version": "v1", "published": "2023-08-03T10:50:27.000Z", "updated": "2023-08-03T10:50:27.000Z", "title": "Growth of Torsion Groups of Elliptic Curves Upon Base Change from Quadratic Fields", "authors": [ "Bo-Hae Im", "Hansol Kim" ], "categories": [ "math.NT" ], "abstract": "For a quadratic field $\\mathcal{K}$ without rationally defined CM, we prove that there exists of a prime $p_{\\mathcal{K}}$ depending only on $\\mathcal{K}$ such that if $d$ is a positive integer whose minimal prime divisor is greater than $p_{\\mathcal{K}}$, then for any extension $L/\\mathcal{K}$ of degree d and any elliptic curve $E/\\mathcal{K}$, we have $E\\left(L\\right)_{\\operatorname{tors}} = E\\left(\\mathcal{K}\\right)_{\\operatorname{tors}}$. By not assuming the GRH, this is a generalization of the results by Genao, and Gon\\'alez-Jim\\'enez and Najman.", "revisions": [ { "version": "v1", "updated": "2023-08-03T10:50:27.000Z" } ], "analyses": { "keywords": [ "quadratic field", "elliptic curve", "base change", "torsion groups", "minimal prime divisor" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }