{ "id": "2308.01623", "version": "v1", "published": "2023-08-03T08:53:58.000Z", "updated": "2023-08-03T08:53:58.000Z", "title": "Another proof for completeness of Ɓukasiewicz logic", "authors": [ "Doratossadat Dastgheib", "Hadi Farahani" ], "categories": [ "math.LO" ], "abstract": "In this paper, we give a new proof for the completeness of infinite valued propositional \\L ukasiewicz logic introduced by \\L ukasiewicz and Tarski in 1930. Our approach employs a Hilbert-style proof that relies on the concept of maximal consistent extensions, and unlike classical logic, in this context, the maximal extensions are not required to include all formulas or their negations. To illustrate this point, we provide examples of such formulas.", "revisions": [ { "version": "v1", "updated": "2023-08-03T08:53:58.000Z" } ], "analyses": { "keywords": [ "completeness", "maximal consistent extensions", "approach employs", "hilbert-style proof", "infinite valued propositional" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }