{ "id": "2308.00790", "version": "v1", "published": "2023-08-01T19:00:46.000Z", "updated": "2023-08-01T19:00:46.000Z", "title": "Conjugate weight enumerators and invariant theory", "authors": [ "Gabriele Nebe", "Leonie Scheeren" ], "categories": [ "math.NT" ], "abstract": "The Galois group of a finite field extension $K/F$ defines a grading on the symmetric algebra of the $F$-space $K^v$ which we use to introduce the notion of homogeneous conjugate invariants for subgroups $G\\leq \\GL_v(K)$. If the Weight Enumerator Conjecture holds for a finite representation $\\rho $ then the genus-$m$ conjugate complete weight enumerators of self-dual codes generate the corresponding space of conjugate invariants of the associated genus-$m$ Clifford-Weil group ${\\mathcal C}_m(\\rho ) \\leq \\GL_{v^m}(K)$. This generalisation of a paper by Bannai, Oura and Da Zhao provides new examples of Clifford-Weil orbits that form projective designs.", "revisions": [ { "version": "v1", "updated": "2023-08-01T19:00:46.000Z" } ], "analyses": { "subjects": [ "13A50", "94B60", "11S20" ], "keywords": [ "conjugate weight enumerators", "invariant theory", "weight enumerator conjecture holds", "conjugate complete weight enumerators", "finite field extension" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }