{ "id": "2307.15952", "version": "v1", "published": "2023-07-29T10:47:06.000Z", "updated": "2023-07-29T10:47:06.000Z", "title": "The argument shift method in universal enveloping algebra $U\\mathfrak{gl}_d$", "authors": [ "Y. Ikeda", "G. I. Sharygin" ], "comment": "13 pages, first draft", "categories": [ "math.RT", "math.QA" ], "abstract": "We prove the conjecture that allows one extend the argument shifting procedure from symmetric algebra $S\\mathfrak{gl}_d$ of the Lie algebra $\\mathfrak{gl}_d$ to the universal enveloping algebra $U\\mathfrak{gl}_d$. Namely, it turns out that the iterated quasi-derivations of the central elements in $U\\mathfrak{gl}_d$ commute with each other. Here quasi-derivation is a linear operator on $U\\mathfrak{gl}_d$, constructed by Gurevich, Pyatov and Saponov. This allows one better understand the structure of \\textit{argument shift algebras} (or \\textit{Mishchenko-Fomenko algebras}) in the universal enveloping algebra of $\\mathfrak{gl}_d$.", "revisions": [ { "version": "v1", "updated": "2023-07-29T10:47:06.000Z" } ], "analyses": { "subjects": [ "17B35", "17B63", "16S30", "81R12" ], "keywords": [ "universal enveloping algebra", "argument shift method", "better understand", "linear operator", "argument shifting procedure" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }