{ "id": "2307.12928", "version": "v1", "published": "2023-07-24T16:41:05.000Z", "updated": "2023-07-24T16:41:05.000Z", "title": "A Recurrence-type Strong Borel--Cantelli Lemma for Axiom A Diffeomorphisms", "authors": [ "Alejandro Rodriguez Sponheimer" ], "comment": "18 pages, 0 figures", "categories": [ "math.DS" ], "abstract": "Let $(X,\\mu,T,d)$ be a metric measure-preserving dynamical system such that $3$-fold correlations decay exponentially for H\\\"older continuous observables. Given a sequence $(M_k)$ that converges to $0$ slowly enough we obtain a strong dynamical Borel--Cantelli result for recurrence, i.e., for $\\mu$-a.e. $x\\in X$ \\[ \\lim_{n \\to \\infty}\\frac{\\sum_{k=1}^{n} \\mathbf{1}_{B_k(x)}(T^{k}x)} {\\sum_{k=1}^{n} \\mu(B_k(x))} = 1, \\] where $\\mu(B_k(x)) = M_k$. In particular, we show that this result holds for Axiom A diffeomorphisms and certain equilibrium states.", "revisions": [ { "version": "v1", "updated": "2023-07-24T16:41:05.000Z" } ], "analyses": { "subjects": [ "37D20", "37A05", "37B20" ], "keywords": [ "recurrence-type strong borel-cantelli lemma", "diffeomorphisms", "strong dynamical borel-cantelli result", "fold correlations decay", "metric measure-preserving dynamical system" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }