{ "id": "2307.12773", "version": "v1", "published": "2023-07-24T13:22:54.000Z", "updated": "2023-07-24T13:22:54.000Z", "title": "Violation of Ferromagnetic Ordering of Energy Levels in Spin Rings by Weak Paramagnetism of the Singlet", "authors": [ "David Heson", "Shannon Starr", "Jacob Thornton" ], "comment": "15 pages, 6 figures", "categories": [ "math-ph", "cond-mat.stat-mech", "math.MP" ], "abstract": "For the quantum Heisenberg antiferromagnet with spin-$j$ on a bipartite, balanced graph, the Lieb-Mattis theorem, ``Ordering of energy levels,'' guarantees that the ground state is a spin singlet, and moreover, defining $E^{\\textrm{AF}}_{\\min}(S)$ to be the minimum eigenvalue of the Hamiltonian in the invariant subspace consisting of all spin $S$ vectors, $\\boldsymbol{S}_{\\mathrm{tot}}^2 \\psi = S(S+1)\\psi$, the function $E^{\\textrm{AF}}_{\\min}(S)$ is monotonically increasing for $0\\leq S\\leq j|\\mathcal{V}|$. For the ferromagnet, the absolute ground state is $E_{\\min}^{\\textrm{FM}}(j|\\mathcal{V}|)$. We say that the graph satisfies ``ferromagnetic ordering of energy levels'' at order $n$, or FOEL-$n$, if two properties hold: (1) $E_{\\min}^{\\textrm{FM}}(j|\\mathcal{V}|)\\leq \\dots \\leq E_{\\min}^{\\mathrm{FM}}(j|\\mathcal{V}|-n)$, and (2) $E_{\\min}^{\\mathrm{FM}}(j|\\mathcal{V}|-n)\\leq E_{\\min}^{\\mathrm{FM}}(j|\\mathcal{V}|-m)$ for all $m\\geq n$. Caputo, Liggett and Richthammer proved a theorem which generally implies FOEL-$1$ is true. Apparently $E_0^{\\mathrm{FM}}(0) 1/2$.", "revisions": [ { "version": "v1", "updated": "2023-07-24T13:22:54.000Z" } ], "analyses": { "subjects": [ "82B10", "81R05", "81R50" ], "keywords": [ "energy levels", "weak paramagnetism", "ferromagnetic ordering", "absolute ground state", "quantum heisenberg antiferromagnet" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }