{ "id": "2307.12768", "version": "v1", "published": "2023-07-24T13:13:14.000Z", "updated": "2023-07-24T13:13:14.000Z", "title": "The zero dispersion limit for the Benjamin--Ono equation on the line", "authors": [ "Patrick Gérard" ], "categories": [ "math.AP" ], "abstract": "We identify the zero dispersion limit of a solution of the Benjamin--Ono equation on the line corresponding to every initial datum in $L^2(\\R)\\cap L^\\infty(\\R )$. We infer a maximum principle and a local smoothing property for this limit. The proof is based on an explicit formula for the Benjamin--Ono equation and on the combination of calculations in the special case of rational initial data, with approximation arguments. We also investigate the special case of an initial datum equal to the characteristic function of a finite interval, and prove the lack of semigroup property for this zero dispersion limit.", "revisions": [ { "version": "v1", "updated": "2023-07-24T13:13:14.000Z" } ], "analyses": { "subjects": [ "37K15", "47B35" ], "keywords": [ "zero dispersion limit", "benjamin-ono equation", "special case", "initial datum equal", "rational initial data" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }