{ "id": "2307.11219", "version": "v1", "published": "2023-07-20T20:17:48.000Z", "updated": "2023-07-20T20:17:48.000Z", "title": "Approximation of functions on a compact set by solutions of elliptic equations. Quantitative results", "authors": [ "Grigori Rozenblum", "Nikolai Shirokov" ], "categories": [ "math.AP", "math.CA" ], "abstract": "We establish that a generalized H\\\"{o}lder continuous function on an $(m-2)$-Ahlfors regular compact set in $\\mathbb{R}^m$ can be approximated by solutions of an elliptic equation, with the rate of approximation determined by the continuity modulus of the function.", "revisions": [ { "version": "v1", "updated": "2023-07-20T20:17:48.000Z" } ], "analyses": { "subjects": [ "41A30", "35J15", "41A25" ], "keywords": [ "elliptic equation", "quantitative results", "approximation", "ahlfors regular compact set", "continuity modulus" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }