{ "id": "2307.10701", "version": "v1", "published": "2023-07-20T08:45:06.000Z", "updated": "2023-07-20T08:45:06.000Z", "title": "Discrete analogues of fractional integrals on product space", "authors": [ "Jinhua Cheng" ], "comment": "13 pages", "categories": [ "math.CA", "math.NT" ], "abstract": "We study the discrete analogue of Stein-Weiss inequality and other variants of fractional integrals on product space, we prove some $\\ell^p\\rightarrow\\ell^q$ bounds for these operators via iteration methods and Fourier transform. In the last section, we involve a Dirichlet character in a discrete fractional integral, then prove the regularity theorem by Hardy-Littlewood circle method.", "revisions": [ { "version": "v1", "updated": "2023-07-20T08:45:06.000Z" } ], "analyses": { "keywords": [ "product space", "discrete analogue", "hardy-littlewood circle method", "discrete fractional integral", "regularity theorem" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }