{ "id": "2307.07472", "version": "v1", "published": "2023-07-14T16:54:09.000Z", "updated": "2023-07-14T16:54:09.000Z", "title": "Spectral gap for projective processes of linear SPDEs", "authors": [ "Martin Hairer", "Tommaso Rosati" ], "comment": "74 pages, 2 figures", "categories": [ "math.PR", "math.AP" ], "abstract": "This work studies the angular component $ \\pi_{t} = u_{t} / \\| u_{t} \\| $ associated to the solution $ u $ of a vector-valued linear hyperviscous SPDE on a $d$-dimensional torus $$\\mathrm{d} u^{\\alpha} =- \\nu^{\\alpha} (- \\Delta)^{\\mathbf{a} } u^{\\alpha} \\mathrm{d} t + (u \\cdot \\mathrm{d} W)^{\\alpha} \\;,\\quad \\alpha \\in \\{ 1, \\dots, m \\} $$ for $ u \\colon \\mathbb{T}^{d} \\to \\mathbb{R}^{m} $, $ \\mathbf{a} \\geqslant 1 $ and a sufficiently smooth and non-degenerate noise $ W $. We provide conditions for existence, as well as uniqueness and spectral gaps (if $ \\mathbf{a} > d/2$) of invariant measures for $ \\pi $ in the projective space. Our proof relies on the introduction of a novel Lyapunov functional for $\\pi_{t}$, based on the study of dynamics of the ``energy median'': the energy level $M$ at which projections of $u$ onto frequencies with energies less or more than $M$ have about equal $L^2$ norm. This technique is applied to obtain -- in an infinite-dimensional setting without order preservation -- lower bounds on top Lyapunov exponents of the equation, and their uniqueness via Furstenberg-Khasminskii formulas.", "revisions": [ { "version": "v1", "updated": "2023-07-14T16:54:09.000Z" } ], "analyses": { "subjects": [ "60H15" ], "keywords": [ "spectral gap", "linear spdes", "projective processes", "novel lyapunov functional", "furstenberg-khasminskii formulas" ], "note": { "typesetting": "TeX", "pages": 74, "language": "en", "license": "arXiv", "status": "editable" } } }