{ "id": "2307.07213", "version": "v1", "published": "2023-07-14T08:15:25.000Z", "updated": "2023-07-14T08:15:25.000Z", "title": "On the maximal spectral type of nilsystems", "authors": [ "Ethan Ackelsberg", "Florian K. Richter", "Or Shalom" ], "comment": "12 pages", "categories": [ "math.DS" ], "abstract": "Let $(G/\\Gamma,R_a)$ be an ergodic $k$-step nilsystem for $k\\geq 2$. We adapt an argument of Parry to show that $L^2(G/\\Gamma)$ decomposes as a sum of a subspace with discrete spectrum and a subspace of Lebesgue spectrum with infinite multiplicity. In particular, we generalize a result previously established by Host, Kra and Maass for $2$-step nilsystems and a result by Stepin for nilsystems $G/\\Gamma$ with connected, simply connected $G$.", "revisions": [ { "version": "v1", "updated": "2023-07-14T08:15:25.000Z" } ], "analyses": { "keywords": [ "maximal spectral type", "step nilsystem", "discrete spectrum", "lebesgue spectrum", "infinite multiplicity" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }