{ "id": "2307.06874", "version": "v1", "published": "2023-07-13T16:22:21.000Z", "updated": "2023-07-13T16:22:21.000Z", "title": "The sum-product problem for small sets", "authors": [ "Ginny Ray Clevenger", "Haley Havard", "Patch Heard", "Andrew Lott", "Alex Rice", "Brittany Wilson" ], "comment": "10 pages, 1 table, 4 figures", "categories": [ "math.CO", "math.NT" ], "abstract": "For $A\\subseteq \\mathbb{R}$, let $A+A=\\{a+b: a,b\\in A\\}$ and $AA=\\{ab: a,b\\in A\\}$. For $k\\in \\mathbb{N}$, let $SP(k)$ denote the minimum value of $\\max\\{|A+A|, |AA|\\}$ over all $A\\subseteq \\mathbb{N}$ with $|A|=k$. Here we establish $SP(k)=3k-3$ for $2\\leq k \\leq 7$, the $k=7$ case achieved for example by $\\{1,2,3,4,6,8,12\\}$, while $SP(k)=3k-2$ for $k=8,9$, the $k=9$ case achieved for example by $\\{1,2,3,4,6,8,9,12,16\\}$. For $4\\leq k \\leq 7$, we provide two proofs using different applications of Freiman's $3k-4$ theorem; one of the proofs includes extensive case analysis on the product sets of $k$-element subsets of $(2k-3)$-term arithmetic progressions. For $k=8,9$, we apply Freiman's $3k-3$ theorem for product sets, and investigate the sumset of the union of two geometric progressions with the same common ratio $r>1$, with separate treatments of the overlapping cases $r\\neq 2$ and $r\\geq 2$.", "revisions": [ { "version": "v1", "updated": "2023-07-13T16:22:21.000Z" } ], "analyses": { "keywords": [ "small sets", "sum-product problem", "product sets", "term arithmetic progressions", "element subsets" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }